欢迎进入广州光桥通信官网,我们的产品有:光纤收发器,工业交换机,电话光端机,工业4G路由器.

他们都在找: 工业PoE交换机光纤收发器视频光端机电话光端机工业以太网交换机

当前位置首页 » 行业资讯 » 半定制人工智能芯片-FPGA芯片是最佳选择

半定制人工智能芯片-FPGA芯片是最佳选择

返回列表 来源:光桥 查看手机网址
扫一扫!半定制人工智能芯片-FPGA芯片是最佳选择扫一扫!
浏览:- 发布日期:2018-01-03 10:14:29【

 一项深度学习工程的搭建,可分为训练(training)和推断(inference)两个环节。推断(inference)环节指利用训练好的模型,使用新的数据去“推断”出各种结论,如视频监控设备通过后台的深度神经网络模型,判断一张抓拍到的人脸是否属于黑名单。虽然推断环节的计算量相比训练环节少,但仍然涉及大量的矩阵运算。在推断环节,除了使用CPU或GPU进行运算外,FPGA以及ASIC均能发挥重大作用。

3

FPGA(可编程门阵列,Field Programmable Gate Array)是一种集成大量基本门电路及存储器的芯片,可通过烧入FPGA配置文件来来定义这些门电路及存储器间的连线,从而实现特定的功能。而且烧入的内容是可配置的,通过配置特定的文件可将FPGA转变为不同的处理器,就如一块可重复刷写的白板一样。因此FPGA可灵活支持各类深度学习的计算任务,性能上根据百度的一项研究显示,对于大量的矩阵运算GPU远好于FPGA,但是当处理小计算量大批次的实际计算时FPGA性能优于GPU,另外FPGA有低延迟的特点,非常适合在推断环节支撑海量的用户实时计算请求(如语音云识别)。

FPGA和GPU内都有大量的计算单元,因此它们的计算能力都很强。在进行神经网络运算的时候,两者的速度会比CPU快很多。但是GPU由于架构固定,硬件原生支持的指令也就固定了,而FPGA则是可编程的。其可编程性是关键,因为它让软件与终端应用公司能够提供与其竞争对手不同的解决方案,并且能够灵活地针对自己所用的算法修改电路。

在平均性能方面,GPU逊于FPGA,FPGA可以根据特定的应用去编程硬件,例如如果应用里面的加法运算非常多就可以把大量的逻辑资源去实现加法器,而GPU一旦设计完就不能改动了,所以不能根据应用去调整硬件资源。

目前机器学习大多使用SIMD架构,即只需一条指令可以平行处理大量数据,因此用GPU很适合。但是有些应用是MISD,即单一数据需要用许多条指令平行处理,这种情况下用FPGA做一个MISD的架构就会比GPU有优势。 所以,对于平均性能,看的就是FPGA加速器架构上的优势是否能弥补运行速度上的劣势。如果FPGA上的架构优化可以带来相比GPU架构两到三个数量级的优势,那么FPGA在平均性能上会好于GPU。

在功耗能效比方面,同样由于FPGA的灵活性,在架构优化到很好时,一块FPGA的平均性能能够接近一块GPU,那么FPGA方案的总功耗远小于GPU,散热问题可以大大减轻。 能效比的比较也是类似,能效指的是完成程序执行消耗的能量,而能量消耗等于功耗乘以程序的执行时间。虽然GPU的功耗远大于FPGA的功耗,但是如果FPGA执行相同程序需要的时间比GPU长几十倍,那FPGA在能效比上就没有优势了;反之如果FPGA上实现的硬件架构优化得很适合特定的机器学习应用,执行算法所需的时间仅仅是GPU的几倍或甚至于接近GPU,那么FPGA的能效比就会比GPU强。

另外,FPGA的灵活性,很多使用通用处理器或ASIC难以实现的下层硬件控制操作技术利用FPGA可以很方便的实现,从而为算法的功能实现和优化留出了更大空间。同时FPGA一次性成本(光刻掩模制作成本)远低于ASIC,在芯片需求还未成规模、深度学习算法暂未稳定需要不断迭代改进的情况下,利用具备可重构特性的FPGA芯片来实现半定制的人工智能芯片是最佳选择。

    【本文标签】:光纤交换机 工业交换机 以太网交换机 光纤收发器 电话光端机 光电转换器 光端机
    【责任编辑】:光桥版权所有:转载请注明出处